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Abstract. By exploiting the theory of linear inequalities, new bounds for the real 
eigenvalues of a real matrix are derived, along with sufficient conditions for matrix 
games to be completely mixed, for determinants to be positive, etc. The simple 
observation on which the derivation of new results and the unification of old results 
are based is that the typical conditions of diagonal dominance which insure the 
nonsingularity of matrices are essentially systems of linear inequalities on the rows 
of the matrices. 

I. Introduction. Our purpose in this note is to derive and unify some old and new 
results on matrix games, and on bounds for eigenvalues, as simple consequences of 
the viewpoint of the theory of linear inequalities. We consider real matrices of order 
n, typically denoted by A (aij). A well-known sufficient condition for such a 
matrix to be nonsingular is 

(1.1) 1 ~~aii I > E aij 1 i = 0, .. * , n -1 

If we imagine that the matrix has been multiplied suitably by a diagonal matrix, 
in order that the new diagonal elements be nonnegative, then we may rewrite 
(1.1) as 

(1.2) ai > ZIatii, i= 0,) ,n-1. 
M ~i 

An alternative way of stating (1.2) is the following: Let Mi be the matrix 
with n rows and 2n-1 columns, where each column has a 1 in the ith row, and 
the other entries are + 1 or -1 in all possible ways. Let the rows of A be denoted by 
Ao01 ... , An-,. Then (1.2) may be rewritten as 

(1.3) A iMi > O i =O, n-1 

Our object in this note is to characterize all possible sets of n matrices 
Mo , * * * l M-1, l such that (1.3) implies A is nonsingular (Theorem 1). As applica- 
tions, we shall discover new classes of such matrices {Mi}, unifying material in 
[1], [2] and [3] on "completely mixed" games, new conditions for some matrices to 
have positive determinant, and new results on bounds for real eigenvalues of real 
matrices. 

II. Main Theorem. 
TiHEOREM 1. Let M0,o X , Mn-, be n matrices, each with n rows, but with the 

number of columns of each matrix unspecified. Let Ci = {Mix I x ? 0}. Assume that, 
for each i, Ci is a pointed cone (i.e., there exists ui , i = 1, * , n, such that ui'Mi > 0). 
Then 

(2.1) (1.3) implies A is nonsingular 
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if and only if 

(2.2) U(+C,) = Rn. 

Proof. Assuming (2.2), we must show that A is nonsingular. The proof is es- 
sentially the same as the standard proof [4] that (1.1) implies A nonsingular. If A 
is singular, there exists a nonzero vector y such that 

(2.3) Ay = 0. 

By (2.2), y or -y is contained in one of the cones Ci . Without loss of generality, 
assume y is in some Ci . Then, from (2.3), we have 0 = A,'y = A i'Mix > 0, since 
each coordinate of A,'M1 is positive (by (1.3)) and x > 0, x $ 0. 

Conversely, assume (2.2) false, i.e., there exists a vector y such that, for each i, 

(2.4) yEEC;, 

and 

(2.5) -y i C;. 

From (2.4), by the hyperplane separation theorem for cones, we infer that there 
exists a vector zi such that 

(Y, z.) <O0, z;lM;_O . 

Since we know there exists ui satisfying u;'M, > 0, we could replace zi in the above 
inequalities by zi + a1ui for a, a small positive number, and obtain, for the new zi, 

(2.6) (y, zi) < 0, z;'M; > O. 

Similarly, from (2.5), we infer the'existence of wi such that 

(2.7) (y, w) > 0, w;'M,> O. 

From (2.6) and (2.7), we see that there exists a positive combination of zi and 
w1, orthogonal to y. Call that vector Ai . We then have 

(2.8) (y, Ai) = 0, A1'M1 > 0. 

In this manner, we construct a matrix A which is singular, yet satisfies (1.3). 

m. Application. We now turn to the question of finding matrices {Mi , other 
than those mentioned in the Introduction, for which (2.2) holds. Let us first de- 
scribe a general method for discovering some classes {M,}, and consider particular 
instances in the next section. Let u be any nonzero vector in R', and let L = 

{x I(x, u) = 01. In L, choose n vectors vo, ... , vn-l such that x E L implies x is a 
nonnegative combination of at most n - 1 of the vectors {vI, v* *, vn1}. (It is easy 
tofindsucha set of vectors; let v1, * , vn-1 bea basis for L, andsetvo = - j vi.) 
It is clear that, if MX has n columns consisting of u and all the vectors { vo, * ,Vn_l 
except v,, then UC, = {x I (u, x) > 01. In other words, UC; is a closed half-space. 
Therefore, U (? C;) = R . 

As an illustration of the foregoing, we prove 
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THEOREM 2. Let f3o, f13, ... I, 0,_ be nonnegative, with ,fi = 1, and assume 
g.c.d. {ji I ,j > O1 is r elatively prime to n. If A satisfies 

aij >0,i=,*...,n-1, and 

(a) 
Efaij?3-,+j > air i = ** n-1r=O,**, n-,r i 

or 

aij > 0, i=0, * n-1 and 

(b) 
EKaijO3-,+; < air i =0) ...* n -1, r = O, .. * , n -1, ro i, 

or 

Zai, <0, i=0, ,n-1, and 

(c) i 

,aijO,8_+j > air, i = ) O,...r n - 1, r = O, ... , n -l1,r i 
i 

or 

aij <0,i=0 ...,n-1, and 

(d) 
() aiji_,r+j < air, i= 0,"* n - 1,r = 0,. ,n -1,r ?i 

i 

then A I # 0. Furthermore, the sign of I A I is positive in case (a), negative in case 
(C), (-_)n-1 in case (b), (-_)n in case (d). 

Proof. To prove the nonsingularity of A, we apply the discussion in the preceding 
paragraph. In cases (a) and (b), u = (1, * , 1). In cases (c) and (d), we use -u 
in place of u. Let vi, i = O, * * , n- 1, be the vector whose jth coordinate is 
-b6j + 3j-i .One can show that any n - 1 of the vectors {v,} are a basis of L, 
and the remaining vector is the negative of their sum. In cases (a) and (c), we use 
the vectors Ivil. In cases (b) and (d), we use the vectors {-vi}. It is then straight- 
forward to verify the nonsingularity of A in each of the four cases. 

To prove our stateml-ents about the signs of I A 1, let us first treat case (a). It is 
clear that, for X > 0, the miiatrix A + XI satisfies the conditions of case (a). If X is 
very large, then clearly I A + XI I > 0. By the continuity of I A + XI I as a func- 
tion of X, if A I < 0, there would have to be some positive X, say Xo, such that 

A + XoI I = 0, a contradiction. To treat case (d), we observe that, in that case, 
- A satisfies the conditions of (a). Therefore, I A = (-1)n I-A I has the sign 
(-1) 

. 

In case (b), denote by J the matrix every entry of which is unity. 
Then A + X(J - I), for X > 0, satisfies the conditions of (b). But, for X large 
and positive, I A + X(J - I) I has the same sign as determiiinant I J - I 1, which 
has the sign (-1)n-I. As before, the proof is completed by appealing to the con- 
tinuity of I A + X(J - I) 1. Finally, case (c) is handled by observing that, in that 
instance, -A is covered by (b). 

THEOREM 3. Let A satisfy any of the four conditions stated in Theorem 2. Then the 
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system of equations i a jxi = 1 has a (unique) solution in which each xi > O in 
cases (a) and (b), each xi < 0 in cases (c) and (d). 

Proof. We shall only treat case (a), the proofs of the other cases being similar. 
By virtue of what has gone before, all we need prove is that the determinant of the 
matrix obtained by replacing the ith row of A by the vector u is not zero, and has 
the same sign as I A 1. Observe that the new matrix satisfies the conditions of case 
(a), except that the strong inequalities are replaced by weak inequalities. Since the 
determinant of a matrix is a continuous function of its entries, it follows that the 
determinant, if not zero, has the same sign as the determinant of A. Suppose y is a 
vector annihilated by the new matrix. Then, since y is orthogonal to u, y G L. 
Therefore, y is a nonnegative combination of at most n - 1 of the vectors {v,}. 
Suppose that the vector omitted in this nonnegative combination is vk, k $ i. 
Then, since Ak' makes a positive inner product with each vector in {vi} other than 
Vk X Ak' could not be orthogonal to y. If the vector omitted is vi, replace y by -y. 
It cannot happen that, also for - y, the vector omitted is again vi, for it is easy to 
show that the cone in L formed by any n - 1 of the v's is pointed. Thus, the new 
matrix cannot be singular, and our theorem is proven. 

In the case when fln-1 = 1 (and all other #i are zero), Theorems 1 and 2 include 
the results of [3]. In the case when all j3i are the same (i.e., 1/n) our theorem gives 
another easy sufficient condition for a matrix game to be "completely mixed." 
These results dispose of the "sticky" example cited in [1] and [2]. 

IV. Bou'nds for Real Eigenvalues of Real Matrices. It is well known [4] that, 
from conditions on the coefficients of a matrix which insure nonsingularity, one 
may derive bounds for the eigenvalues of that matrix. In order to apply the fore- 
going results, it is useful for us to first state an alternative form of Theorem 2. 

THEOREM 2'. Let Nlo, f1, * , fnl1 satisfy the conditions of Theorem 2. Consider 
any subset S C {O, 1, * * ,n -1}, and let S be the complemnentary set of indices. If 
inequalities (a) of Theorem 2 are satisfied for i G S, and inequalities (d) are satisfied 
for i E 8, then A is nonsingular. Similarly, if inequalities (b) are satisfied for i G S, 
and inequalities (c) are satisfied for i G S, then A is nonsingular. 

Proof. Going back to Theorem 1, the only change we have made in Theorem 2 is 
to replace Ci, for i G S, by -Ci . By virtue of (2.2), this change does not affect 
the nonsingularity of A. 

It is simplest for us to consider the case of Theorem 2 in which all ,B; are 1/n. 
(Conditions somewhat more complicated to state are inferrable when the ,i are 
any nonzero numbers, not necessarily the same.) Then the inequalities in each of 
(a), (b), (c), (d) become, respectively, 

asj > 0, 

Laii> nmax aii, 
j o 

aij > 0, 

jaii < n minaii, i joi 
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ai, < 0, 
(c) 

Laii> nmax aij 

ai, < 0, 
(d) 

a,1 <n mm ais. 

We shall also use, for any real number a, the symbols a+ and a_, where 

a+ =a if a > O, 

-O if a <O, 

a =a if a_O, 

-O if a > O. 

THEOREM 4. For any real matrix A define 

P= aij - (n max ai>+, 

Q, aii -( min aii_ 

Then every real eigenvalue X of A lies in the union of the closed intervals [P1,. Q,]. 
Furthermore, no eigenvalue of A satisfies the inequalities 

(4.1) max { aii - (n min aii +} < < min{ aii - (nmax ai>} 

Proof. To prove the first part of the theorem, assume that the real eigenvalue 
X of A does not lie in any of the intervals [Pi, Qj. Since the ith interval contains 
Ei ai , it follows that, for each i, X 5 Ej aij . Let S = {i i Es ai1 - ) > O0, 
S = {i I Ej aij - X < O}. Then, if i E S, the ith row of A - XI satisfies inequality 
(a). If i E S, the ith row of A - XI satisfies inequality (d). By virtue of Theorem 
2', A - XI is nonsingular, contradicting the fact that X is an eigenvalue of A. 

To prove that no eigenvalue of A satisfies (4.1), let us first show that, if X satisfies 
(4.1), then, for each i, X 0 Ej aij . If not, then for some i, we have 

Eai-- (n ujai+ < Eai < Eaj -(nmaxasY . 

If Ej aii is subtracted from each expression, the resulting inequalities are incon- 
sistent. Now, with S and S defined as before, we find that each row of A- XI 
satisfies either (b) or (c), and the argument is the same as before. In the case of 
the matrix al + bJ, where J is the matrix every entry of which is unity, this theorem 
establishes that the only possible real eigenvalues of A are a + nb and a, which is 
indeed the case. 
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